Scientists discover a role for 'junk' DNA
Posted: Sat Apr 14, 2018 3:33 am
So Intelligent Design's prediction were right and Evolutionary predictions were wrong. Big surprise
I guess Dawkins is gonna have to rewrite some of his books, as he and many other evolutionists held up junk DNA as proof of evolution for years and years
I guess Dawkins is gonna have to rewrite some of his books, as he and many other evolutionists held up junk DNA as proof of evolution for years and years
Scientists discover a role for 'junk' DNA
Researchers at the University of Michigan Life Sciences Institute and the Howard Hughes Medical Institute have determined how satellite DNA, considered to be "junk DNA," plays a crucial role in holding the genome together.
Their findings, published recently in the journal eLife, indicate that this genetic "junk" performs the vital function of ensuring that chromosomes bundle correctly inside the cell's nucleus, which is necessary for cell survival. And this function appears to be conserved across many species.
This pericentromeric satellite DNA consists of a very simple, highly repetitive sequence of genetic code. Although it accounts for a substantial portion of our genome, satellite DNA does not contain instructions for making any specific proteins. What's more, its repetitive nature is thought to make the genome less stable and more susceptible to damage or disease. Until fairly recently, scientists believed this so-called "junk" or "selfish" DNA did not serve any real purpose.
"But we were not quite convinced by the idea that this is just genomic junk," said Yukiko Yama****a, research professor at the LSI and lead author on the study. "If we don't actively need it, and if not having it would give us an advantage, then evolution probably would have gotten rid of it. But that hasn't happened."
Yama****a and her colleagues decided to see what would happen if cells could not use this pericentromeric satellite DNA. Because it exists in long, repetitive sequences, the researchers could not simply mutate or cut the entire satellite DNA out of the genome. Instead, they approached the question through D1, a protein known to bind to satellite DNA.
The researchers removed D1 from the cells of a commonly used model organism, Drosophila melanogaster (fruit flies). And the team quickly noticed that germ cells -- the cells that ultimately develop into sperm or eggs -- were dying.
Further analysis revealed that the dying cells were forming micro-nuclei, or tiny buds, outside the nucleus that included pieces of the genome. Without the entire genome encapsulated in the nucleus, the cells could not survive.
More